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Abstract: Regression analysis plays a central role in statistics and our understanding of the world. Linear regression models 

are the simplest type of regression and an understanding of them is an essential basis for more advanced models. In this article 

we will show how to use Excel to generate data from a simple linear regression model and illustrate how the statistical methods 

behave both when the fundamental assumptions of the model hold and when the fundamental assumptions are violated. The 

advantage of the using the program Excel is that when you press the recalculate button, under the Formulas menu, the data that 

is generated at random will be regenerated, statistical calculations will be recalculated and relevant graphs will be redrawn. 

Least squares is the statistical technique typically used when assumptions are satisfied. A statistical technique used when the 

normality assumption is violated is the non-parametric technique introduced by Kendall and Theil. The latter is useful when 

data are skewed or heteroskedastic, and is as powerful as least squares regression for Normally distributed data. Exercises are 

provided to illustrate both these procedures. In these exercises we generate samples of a Simple Linear Regression where the 

error term could follow a Normal distribution or the heavy tailed t-distribution. 
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1. Introduction 

An important aspect of any statistical procedure are the 

assumptions that the procedure is based on. For example, in 

simple linear regression, the least squares estimates of the 

slope and intercept, together with confidence intervals using 

the t-distribution requires that the random error terms in the 

model are independent and follow a normal distribution with 

mean zero and constant variance [1-3]. For the advanced 

student or academic, a variety of programs are available to 

calculate regression analyses [4-7].  

If the underlying assumptions do not hold, the desired 

performance of the statistical procedures may no longer hold 

true. Sometimes the effect of an invalid assumption on a 

property of the procedure is minimal, sometimes not so. If the 

distribution of the error term is non-normal but has a finite mean 

and variance the Gauss-Markov theorem [1] still holds (stating 

that the least squares estimates are Best Linear Unbiased 

Estimates (BLUE) of the slope and intercept). The departure 

from normality will have little effect on the properties of 

confidence intervals computed assuming normality when the 

sample size is adequately large. The reason for this is the 

asymptotic properties of the least squares estimates.  

In our earlier articles [8-10] we used Excel to simulate 

both a Hidden Markov model and heteroskedastic models 

showing different realizations of these models and the 

performance of the techniques for identifying the underlying 

hidden states using the simulated data.  

The purpose of this paper is to show how to use the program 

Excel to simulate data from a simple linear regression model 

using least squares and the non-parametric Kendall-Theil 

regression approach [11, 12]. The latter is useful when data are 

skewed or heteroskedastic, and is as powerful as least squares 

regression for Normally distributed data.  

The advantage of the using the program Excel is that when 

you press the recalculate button, under the Formulas menu, the 

data that is generated at random will be regenerated, statistical 

calculations will be recalculated and relevant graphs will be 

redrawn. This allows the user to observe the variation in these 

procedures for different realizations of the data. 
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2. A Model for Non-normality (the 

Cauchy Distribution, the t-

Distribution) 

The probability density function of the standard 

Normal, Students t-distribution with ν  degrees of freedom 

and the standard Cauchy distribution is given in (1). The 

Standard Cauchy distribution is equivalent to the t 

distribution with 1 degree of freedom. A graph of the 

standard normal distribution, the t – distribution with 5 

degrees of freedom and the Cauchy distribution is in 

Figure 1 

 

Figure 1. Normal, t -dist’n, Cauchy densities. 
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Figure 2. Graph of Normal, t -dist’n, Cauchy densitie. 

The Cauchy distribution is an Example of a distribution 

where the Law of Large numbers, the Central limit Theorem  

[13] and the Gauss-Markov Theorem do not apply [1]. In 

order for these theorems to hold both the mean and higher 

moments have to exist and be finite. This is not the case for 

the Cauchy distribution. In fact the distribution of the sample 

mean is the Cauchy distribution for any sample size (i.e. the 

distribution of the sample mean is the same as that of a 

individual observation when the data comes from the Cauchy 

distribution) 

The Cauchy distribution is a heavy-tailed distribution. The 

t-distribution is also a heavy- tailed distribution (but not as 

extreme) when the degrees of freedom ν is small. For the 

degrees of freedom ν >2 both the mean and variance of the t-

distribution exist and are finite ensuring the validity of the 

Law of Large numbers, the Central limit Theorem and the 
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Gauss-Markov Theorem As the degrees of freedom increases 

the t distribution approaches the standard normal distribution. 

Tsay [14] uses the t-distribution with 5 degrees to model 

random disturbances that appear in various time series 

models of financial data. This accounts for the sometimes 

extreme changes that appear in financial data. The Cauchy 

distribution is appropriate if extreme values are prevalent in 

the data (the t-distribution with degrees of freedom higher 

than 1 in the less extreme case). This could occur in surveys 

where individuals were asked to make a continuous 

measurement of some quantity and extreme values were 

prevalent in the populations. For example, measurements of 

blood pressure, IQ, performance of a political leader, could 

result in non-normal data with extreme values at either end. 

The t-distribution with ν degrees of freedom can also be 

shown to be mixture of Normal distributions with mean 0 and 

variance W, where the weighting distribution for W is the inverse 

gamma distribution with α = ν/2 and β = ν/2 [15]. This implies 

that a random variable T will have the t-distribution with ν 

degrees of freedom if W is selected from the inverse gamma 

distribution with α = ν/2 and β = ν/2 and then T is selected from 

Normal distributions with mean 0 and variance W. 

3. Simulation of Data from a Continuous 

Distribution in Excel 

Uniform random variates on [0,1] can be generated in 

Excel with the function “RAND()”. The generation of 

random variates from a continuous distribution with measure 

of central location µ and measure of scale σ, can be carried 

out using the inverse-transform method [16]. Namely Y = F-

1(U) where F(u) is the desired cumulative distribution of Y 

and U has a uniform distribution on [0,1] (see Figure 2). In 

Excel this is achieved for the Normal distribution (mean µ, 

standard deviation σ) with the function “µ 

+σ*NORMSINV(RAND())” and for the Cauchy (t with 1 

d.f.) location parameter, µ, and scale parameter, σ, “µ +σ* 

TINV(2*(1-RAND()),1)” 

Comment: The Excel function TINV(U,df) does not 

calculate F
-1(U) for the t-distn with degrees of freedom df, 

however the excel function TINV(2*(1-U),df) does achieve 

the desired calculation. 

4. Setting up the Excel Worksheet to 

Simulate Simple Linear Regression 

Model Data 

The data simulated will come from a simple linear 

regression model. This can easily be generalized to a multiple 

linear regression model with more than 1 independent 

variable. The parameters of the model 

i. mean (µx), of independent variable x, stored in cell C2 

ii. standard deviation (σ x), of independent variable x, 

stored in cell C3 

iii. slope (β), stored in cell F3 

iv. intercept (α), stored in cell F2 

v. standard deviation (σ , scale parameter for random 

error terms in the model), stored in cell F4 

vi. sample size, (n), stored in cells C4 

vii. a parameter that determines normality of the 

independent variable data versus non-normality. 

stored in cells C1:E1. This parameter is set to zero if 

the desired data is normal. If this parameter is set to 

an integer, ν, greater than 0 the data will come from a 

t -distribution with ν degrees of freedom. The t -

distribution is a non-normal heavy-tailed, centered 

and symmetric about zero. 

viii. a parameter that determines normality of the random 

error terms in the simple linear regression model 

versus non-normality. This parameter is stored in 

cells C1:E1. As above if this parameter is set to zero 

if the random error terms will be normal. If this 

parameter is set to an integer, ν, greater than 0 the 

random error terms will come from a t -distribution 

with ν degrees of freedom. 

ix. A final parameter (precision), located in cell A2 

specifies the of decimal places that the raw data is 

rounded to. 

See Figure 3 for the set-up in Excel. 

 

Figure 3. Graphical Illustration of the Inverse-Transfom method. 

 

Figure 4. Excel layout of model parameters. 

5. Generating Simulated Data 

Copy the observation number 1 into Cell B6, Paste the 

formula “=IF(B6<$C$4,B6+1,"")” into cell B7. Copy this 

formula to cells B7:B32 

This will put the observation numbers from 1 to n in cells 

B7:B32 with blanks once n is exceeded. 

Generating values of the independent variable (x) 

Paste in cell C6 the formula 

=IF(B6="","",ROUND(C$2+C$3*IF(C$1=0,NORMSINV
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(RAND()),TINV(2*(1-RAND()),C$1)),$A$2)) 

Copy this formula to cells C6:C32. If the normality 

parameter is 0, the data generated will be from the normal 

distribution with mean=”µx(C$2)” And standard deviation = 

“σx(C$3)”. If the normality parameter is an integer greater 

than 0, the data will be a random number with a t-distribution 

scaled by the “σ(C$3)” and location shifted by the “µ(C$2)” 

The data will be rounded to the number of decimals specified 

by “precision”. If the observation number exceeds n the value 

of x will be left blank. 

Generating values of the dependent variable (y). 

Paste in cell D6 the formula 

“=IF(B6="","",ROUND(F$2+F$3*C6+F$4*IF(F$1=0,NO

RMSINV(RAND()),TINV(2*(1-RAND()),F$1)),$A$2))” 

Copy this formula to cells D6:D32. 

If the observation number exceeds n the value of y will be 

left blank, otherwise the value of y will be α(F$2) + β(F$3)x 

+ σ(F$4)ε where ε will a random number generated from the 

N(0,1) distribution if F$1 = 0, the t(ν) distribution if F$1 = ν. 

6. Computation of Statistics Required for 

Simple Linear Regression 

Suppose we have the data, {(xi,yi): i = 1, 2, …, n}, from k 

simple linear model described above. Let +** =∑ �&- − &̅
�, +%% = ∑ �0- − 01
�2-3�2-3�  and +*% =∑ �&- − &̅
�0- − 01
2-3� . Then the estimate of the slope is 

45 = 678677                                (2) 

and intercept is 

 9: = 0	< − 45&̅ = 0	< − 678677 &̅.                 (3) 

The estimate of the standard deviation, σ, is  

= = >∑ ?%@�AB�CD*@E�F@G� 2�� = H688�I78�I772�� .                (4) 

To carry out these calculations. 
Place the formula “=SUM(OFFSET(C$6,0,0,$C$4))” in 

Cell C34 to calculate ∑ &-2-3� , the formula 

“=SUMSQ(OFFSET(C$6,0,0,$C$4))” in cell D34 to 

calculate ∑ &-�2-3� , the formula 

“=SUM(OFFSET(D$6,0,0,$C$4))” in Cell E34 to calculate ∑ 0-2-3� , the formula “=SUMSQ(OFFSET(D$6,0,0,$C$4))” 

in cell F34 to calculate ∑ 0-�2-3� ,, the formula 
“=SUMPRODUCT(OFFSET(C$6,0,0,$C$4),OFFSET(D$6,0

,0,$C$4))” in Cell G34 to calculate ∑ &-0-2-3� . 

Place the formula “=D34-C34^2/$C$4” in Cell C36 to 

calculate +**, the formula “=F34-E34^2/$C$4” in Cell D36 

to calculate +%% and the formula “=G34-(C34*E34)/$C$4” in 

Cell E36 to calculate +*% . 

The setup in Excel is illustrated in Figure 4. 

 

Figure 5. Excel layout of summary statistics. 

Estimates of slope and intercept of Simple Linear 

Regression 

Estimate of the Slope 

45� = 678677                         (5) 

To compute this estimate put the formula “=E36/C36” in 

cell G3. 

Estimate of the intercept  

45J = 01 − 45�&̅ = 01 − 678677 &̅                      (6) 

To compute this estimate put the formula “=(E34-

G3*C34)/C4” in cell G2. 

The setup in Excel is illustrated in Figure 5. 

 

Figure 6. Excel layout of estimates of model parameters. 

7. A Non-parametric Model for Simple 

Linear Regression 

There are many ways to extend the simple linear regression 

model to a non-parametric alternative. A linear trend is a 

parametric model of trend (parameters being slope and 

intercept). While it is possible to model the trend with a non-

parametric model (reference), We will consider the non-

parametric alternative to the Simple Linear Regression model 

due to Kendall-Theil, Sen-Siegel [17]. This model keeps the 

parametric linear model for trend but allows for the possibility of 

a non-parametric model for the random error terms. This 

analysis is appropriate when the error term has non-normal 

distribution as exhibited by the t-distribution with a small 

degrees of freedom. If the t distribution has a finite mean and 

variance (df >= 3?) then the least squares estimators are optimal 

(B.L.U.E.) because of the Gauss-Markov Theorem [1]. 

In Kendall- Theil regression, the regression coefficient β1 

of the linear trend is estimated by finding the slopes between 

each pair of points and determining the median of that 

collection of slopes. 

45� = K�LMNO PQ@�QRS@�SR |1 ≤ M < W ≤ OX              (7) 

The intercept β0 is estimated using the medians of the 

dependent variable, YZ =	yMedian and the independent variable, 



198 William Henry Laverty and Ivan William Kelly:  Exploring the Effects of Assumption Violations on   
Simple Linear Regression and Correlation Using Excel 

[Z =	xMedian. Namely, 

45J = YZ − 45�[Z                           (8) 

To compute the estimates of the Kendall-Theil slope and 
intercept, we need to make a list of the indices (i, j) of all 
possible pairs of points (Xi,Yi) and (Xj, Yj) for which we will 

compute the slope 
Q@�QRS@�SR. To construct this list (1,2), (1,3),…, 

(n-1,n), we will put in cell Q7 the value 1 and in cell R7 the 
value 2. Then in cell Q8 we put the formula 
“=IF(Q7="","",IF(R7<$C$4,Q7,IF(Q7<$C$4-1,Q7+1,"")))”. 
And in cell R8 we put the formula 
“=IF(Q8="","",IF(R7<$C$4,R7+1,Q8+1))” 

Then copy the formulae in cells Q8 and R8 down a 

number of rows that exceeds the number of pairs 
�2��
2� . 

Then in cell S8 insert the formula 
“=IF(Q7="","",IF(OFFSET($C$5,R7,0)=OFFSET($C$5,Q7,
0),"",(OFFSET($D$5,R7,0)-
OFFSET($D$5,Q7,0))/(OFFSET($C$5,R7,0)-
OFFSET($C$5,Q7,0))))”. 

This is using the OFFSET function to compute 
Q@�QRS@�SR. It 

will leave it blank if the indices (i,j) are blank or Xi =Xj 

To compute the Kendall-Theil estimate of slope put the 

formula “=$C$4*($C$4-1)/2” in cell R1. This computes the 

number of point pairs. Then place the formula 

“=MEDIAN(OFFSET(S$7,0,0,$R1,1))”))” in cell R3. This 

calculates the Kendall-Theil estimate of the slope. 
To compute the Kendall-Theil estimate of the intercept put 

the formulae “=MEDIAN(OFFSET(C5,1,0,$C$4,1” in cell 
T3 and “=MEDIAN(OFFSET(D5,1,0,$C$4,1” in cell U3. 
This computes the median of the X values and stores it in cell 
T3 and the median of the Y values and stores in U3. Finally 
put the formula “=U3-R3*T3” in cell S3 to compute the 
Kendall-Theil estimate of the intercept. The setup in Excel is 
illustrated in Figure 6. 

 

Figure 7. Computation of Kendall-Theil estimates of slope and intercept. 

For comparisons with the least squares estimates put the 

formulae “=S3” and “=R3” in cells H2 and H3 respectively. 

The setup in Excel is illustrated in Figure 7. 

 

Figure 8. Comparison of Kendall-Theil estimates with Least Squares 

Estimates. 

Predicted values for simple Linear Regression and 

Kendall-Theil 

Put the formula “=IF(B6="","",G$2+G$3*C6)” in cell C6 

for the predicted value from simple linear regression and the 

formula “=IF(B6="","",H$2+H$3*C6)” in cell D6 for the 

predicted y-value using Kendall-Thiel regression. The 

formulae in C6 and D6 are copied down to C30 and D30 to 

compute all the predicted values for both procedures. 

By selecting the data in cells C5:F30 one can then insert a 

scatter plot. This plot can be altered by selecting “change chart 

type”. Change to “Combo” with y a “Scatter”, y pred a “scatter 

with straight lines” and Ken-Th a “scatter with straight lines” 

The setup in Excel is illustrated in Figure 8. 

 

Figure 9. Graphing scatterplot of data with Least squares and Kendall-Theil linear fit. 
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Resulting in the graph Figure 9. 

 

Figure 10. Graph of scatterplot of data with Least squares and Kendall-Theil linear fit. 

8. Exercises That Can Be Performed to 

Illustrate the Effects of Assumption 

Violations on Simple Linear 

Regression 

In these exercises we generate samples of a Simple 

Linear Regression where the error term could follow a 

Normal distribution or the heavy tailed t-distribution. To 

estimate the parameters we use both least squares 

regression and Kendall-Theil regression. In these 

exercises we keep the intercept and slope the same (α = 

20, β =1.5, σ = 5). Also we keep the mean and standard 

deviation of the Independent variable X to be  µX = 20 and 

σX = 6. The reader can try different values. The 

independent variable could also follow a normal 

distribution or the heavy-tailed t-distribution. 

A. Normality for both X and Y variables: 

 normality of X = 0 (normal distribution), normality of Y = 

0 (normal distribution) 

 

Figure 11. Graph of scatterplot of data with Least squares and Kendall-Theil linear fit with Normal residuals. 

Comment: Both procedures giving approximately the same 

results. Different realizations of the data can be observed by 

pressing the “Calculate Now” button in the “Formulas” 

Menu. One can also observe the performance of least squares 

regression and Kendall-Theil regression by changing 

regression parameters (α, β and σ) or the independent 

variable parameters ( µX and σX) or both. 

B. Normality for the independent variable, Cauchy 

departures for the dependent variable 

 normality of X = 0 (normal distribution), normality of Y = 1 
(Cauchy distribution) 
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Figure 12. Graph of scatterplot of data with Least squares and Kendall-Theil linear fit with Cauchy residuals. 

Comment: Least Squares considerably less accurate, influenced by extreme values possible from the Cauchy distribution. 

C. Cauchy distribution for the independent variable, Normal departures for the dependent variable; 

 

Figure 13. Graph of scatterplot of data with Least squares and Kendall-Theil linear fit with Cauchy distributed independent variable. 

Comment: Non-normality in the independent variable has no effect on the estimation process. 

D. Normality for the independent variable, t-distribution with 3 d.f. departures for the dependent variable: 

 

Figure 14. Graph of scatterplot of data with Least squares and Kendall-Theil linear fit with t-distn (3 d.f.) residuals. 
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Comment: The t distribution with 3 d.f. is a heavy tailed 

distribution but it has both finite mean and variance. For this 

reason the Gauss-Markov theorem applies stating that the 

least squares estimates have optimal properties (Best Linear 

Unbiased Estimators (B. L. U. E.s)). 

9. Discussion 

In applying any statistical procedure it is important in 

understanding the assumptions on which it is based. It is also 

important to understand the effects on these procedures of the 

violations of these assumptions. Sometimes the effects of the 

violations can be extreme, sometimes minimal. The purpose 

of this article is to provide tools for individuals to gain an 

intuitive understanding of these violations using the readily 

available program Microsoft Excel.  

Two methods for determining a linear relationship between 

two variables were considered (least squares and Kendall-

Theil) along with exercises that can be followed to consider 

the effects of assumption violations on both. This procedure 

is an important component of introductory statistical courses 

and textbooks. 
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